ONE-DIMENSIONAL PROPAGATION OF A MONOCHROMATIC
LIGHT PULSE IN ABSORBING MEDIA
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A study is made of the equations describing the propagation of a monochromatic pulse of ra-
diation of arbitrary shape in absorbing media — a plasma and an absorhing two-level photo-

dissociable medium. Exact analytic solutions are found for a wide variety of boundary con-
ditions. The discussion is carried through for problems with plane, cylindrical, and spher-

ical symmetry. The formulas obtained can be used directly to compare calculation and ex-

periment. :

The equations for the transport of radiation in media whose properties are altered by a light pulse
are nonlinear. This significantly limits the number of cases for which it is possible to obtain a closed
analytic solution of the system of equations satisfying prescribed initial and boundary conditions. Partic-
ular solutions of the transport equations in an absorbing (amplifying) two-level medium and in a plasma
have been obtained by various methods [1-4].

The equation for the transport of radiation of frequency v in an absorbing (amplifying) medium has
the form :

18I
o vl =—KI (1)

where I(r, ©, t) is the intensity of radiation per unit solid angle propagating in the direction @, K is the ab-
sorption coefficient of the medium, and ¢ is the velocity of light. We note that the first term in (1) is es-
sential in investigating picosecond pulses in a plasma [4, 5]. When the reflection and scattering of light
can be neglected and propagation in the medium can be treated as one-dimensional, Eq. (1) takes the form

18I 1 2
757+737(’I):_K1 (2)

where =0, 1, and 2 respectively for plane, cylindrical, and spherical symmetry.
The material equation for an absorbing medium can be written as '
an (r)09/ot = KI 3)

by assuming that the medium is characterized by two variable parameters ¢(r, t), n(r), and K=K(g, n).
We write the initial and boundary conditions in the form
[0,0=0, @0,0=0x() o> 4)
I(ro,t) =Io(t) (t0)

Equations (2) and (3) with conditions (4) constitute the mathematical formulation of a number of phys-
ical problems:

1) If ¢=T is the plasma temperature, n is the electron density, a =3/,, and K=K(T, n), we have the
problem of the heating of a quiescent plasma by laser radiation [1, 3, 4];
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2) if @=N is the molecular density of the gas, ¢ =—1, n=1, K=¢N, where ¢ is the photolysis cross
section, we have the problem of the propagation of a photodissociation wave in a gas [6];

3) if ¢=N,—N; is the difference in populations of the excited and ground states of active atoms, K=
c(Ny—Np), n=1,a= Y,, we have the problem of the amplification (absorption) of a light pulse in a two-level
medium without taking account of the spontaneous decay of the upper level [2, 7].

After the change of variables

- N=ct—r+r E=r (5)
the gystem (2), (3) takes the form
i;%—‘r —Z—z =—Ki (6)
]
n () % —Ki (7

Here we have introduced the notation i=I/ac. If Kis written in the form K=k(f)/f(¢) and i is elim-
inated from the equations, we find a first integral of the system (6), (7):

;?['%Sf@)dq)] +%%Si(¢)d®+w=ol(g) (8)

For a wide variety of physical problems we can set [1, 8]
F@) =9, k=Fkn?

For example, for bremsstrahlung-type absorption in a plasma y="%,, #=2; in photolysis or light am-
plification in an active medium y=—1, 8=0, and k,=¢. We investigate Eq. (8) for two cases:

Case 1: y=—1. Equation (8) reduces tothe generalized Bernouilli equation for the function @ = 1~Apv+i;

Qe ATV L0 QE, AQ=( R %= ; ©)

The solution of (9) is reduced to quadratures if Q(¢) satisfies the equation

T+1 .
‘_i_QFg__l_ (%_%%) QYH———R(-— A)‘Y+1Q:0 (]_0)
from which we find that Q must have the form
/
Q® =(1+1) kg™ (G - TaicuRSn"g“dg)l Yox= - j . (11)

where R and G are arbitrary constants, 6=(— 1) for y>—1, and 6=1 for y<—1.
For Q(£) in the form (11) the solution of (8) has the form

do , — Y@ E D)
S Q) _ Re g TEM= Dk R In ]TSkORSn“g“dé— G] (12)

where
o=[-4 @)/ El"a
Using boundary condition (4) at r=r) we find F(1). Finally we have

o e To

s dw 4y Ly - . A . A
S V) _ Ry 1 = )YG(LT ) In l [wﬁkoR Sn“r*"dr — G} [761901? S g — G] \
o
where
® = (— 1)Y+1 r“nl"ﬁ(p”l, @ = (— 1)Y+1r01n1—{3 (o) o™+ (13)
nje 1/ (x+1)

o) =[ko(r +0m 000~ § Lo an 4077 o]
0

The expression for the intensity I is easy to obtain from (7):

I =1,y [0l /&) R 1] {mlol(vﬂ) — R 1] (14)
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We use the initial condition (4) at t=0. Since I(r, 0)=0 we have for t=0
39k = a/or, Q (§) = Q (r)

Specifying Q(¢) in the form (11) is equivalent to specifying the initial profiles of n(r) and ¢,(r); the expres-
sions for these quantities must satisfy the equation

[
Al 7 .To

do — )V (y+1
S o/ py 1T ( )’rf(STR ) hll [’TGkoR Sn“r'mdr — @G ] [TﬁkoH S n*rXgr G]

Do

-1

where .
0y = (= ol BYH oy =0y (o) (15)

Thus the system (2)-(4) with condition (15) has a solution obtained from (13) and (14). In particular
the expressions given in [1, 3, 4] are easily obtained from Egs. (13) and (14) by setting R=0 and giving n(r)
and cp*(r) special forms. It should be noted that, for example, in problems of plasma heating by intense
laser pulses it is important to obtain analytic solutions for the most diverse initial profiles of the plasma
density and the temperature for various types of symmetry in order to be able to compare the calculations
with experimental data. For example, when picosecond pulses are incident on a solid target [5] the profile
of the plasma density n(r) is an increasing function of r as a consequence of the gas dynamic removal of
the heated layer, and the profile of the plasma temperature is bell-shaped since the temperature is low at
the plasma-vacuum boundary because of gas-dynamic dispersion and at the plasma-solid boundary because
of the loss of heat by electron thermal conduction; the motion of the plasma during the time of propagation
of the pulse can be neglected because the time involved is so small (10711102 sec). The required form
of the profile is selected by varying R and G in Eq. (15).

Case 2: y=—1. For y=-1 Eq. (8) takes the form

%%Jr[“—f’l%Jr—g—] In@ + ke = Q1 ) (16)
In contrast with the case considered above it is expedient to solve Eq. (16) separately for each phys-
ical case since the search for a general method of solution is beset with formidable mathematical difficul-
ties. In particular let us consider Eq. (16) as applied to photolysis problems or to the propagation of a
pulse in a two-level medium. Setting n=1 and ky=¢ (the interaction cross-section for the appropriate pro-
cess) we obtain

1 o9 .
T et = (17)

If @ =0 (plane case) Eq. (17) is linearized by the substitution Z = ¢~%, and its solution for a two-level
medium (¢=N,—N,) is given in [2]. For « =0 the substitution w=0c¢¢ reduces Eq. (17) to the form

= telo to=Q@ (18)

For Q=const and the boundary condition (4) the solution of Eq. (18) can be written in the form

§_dw_ L (19)
0oQ@—=-0—alne) 2

where

k4l
@ =orgo, o=@y () exp | =\ To () a1
0

The expression for the intensity can obviously be wfitten in the same form as (14):
IT=ILimot+ane—Q]{w 4 alnw— Q1 (20)

We now take account of the initial condition at t=0. The profile of ¢+ = s (") / or must satisfy the
equation

¢ do r
m(Q—m—alnw)=1n—ﬁ (21)

@, (To)
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where Q = Q% = In wylry + wylry). If Q=Q% the profile of ¢, has the simple form

Pi = Py (To) ro/7

In cylindrical symmetry this form of the profile is in a certain sense equivalent to a constant profile

of ¢, in plane symmetry; i.e., the wave of the corresponding process for a constant intensity I, at the
boundary is propagated with the constant velocity D=Iy/¢,(r)).

In conclusion the authors thank O. N. Krokhina for a discussion of the problems considered in the

paper.
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